Click here to view on PubMed»
- Ontiveros, C. O. et al. Anti‑PD‑L2 immunotherapy is efficacious against melanoma in aged hosts through IL‑17 and IFNγ signalling. Nat Commun 19, 16 (2025). doi: 10.1038/s41467-025-65025-2
- Carmichael, M. M., et al. Profiling bile acids in the stools of humans and animal models of cystic fibrosis. Microbiol Spectr 13, e0145125 (2025). doi: 10.1128/spectrum.01451‑25
- Varanasi, S. K. et al. Bile acid synthesis impedes tumor-specific T cell responses during liver cancer. Science 387 , 192–201 (2025). doi: 10.1126/science.adl4100
- Sudo, K. et al. Quantifying forms and functions of intestinal bile acid pools in mice. Cell Mol Gastroenterol Hepatol 18, 101392 (2024). doi: 10.1016/j.jcmgh.2024.101392
- Singh, V. et al. Clonal Parabacteroides from Gut Microfistulous Tracts as Transmissible Cytotoxic Succinate-Commensal Model of Crohn’s Disease Complications. bioRxiv (2024). doi: 10.1101/2024.01.09.574896
- Balasubramanian, A. & Sundrud, M. S. ATP-dependent transporters: emerging players at the crossroads of immunity and metabolism. Front Immunol 14, 1286696 (2023). doi: 10.3389/fimmu.2023.1286696
- Abreu, M. T. et al. Transcriptional Behavior of Regulatory T Cells Predicts IBD Patient Responses to Vedolizumab Therapy. Inflamm Bowel Dis 28, 1800–1812 (2022). doi: 10.1093/ibd/izac151
- Fuerst, R. et al. Development of a putative Zn2+-chelating but highly selective MMP-13 inhibitor. Bioorg Med Chem Lett 76, 129014 (2022). doi: 10.1016/j.bmcl.2022.129014
- Chen, M. L. et al. CAR directs T cell adaptation to bile acids in the small intestine. Nature 593, 147–151 (2021). doi: 10.1038/s41586-021-03421-6
- Wang, R. et al. Genetic and pharmacological inhibition of the nuclear receptor RORα regulates TH17 driven inflammatory disorders. Nat Commun 12, 76 (2021). doi: 10.1038/s41467-020-20385-9
- Chen, M. L. et al. Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes. J Exp Med 217, e20201434 (2020). doi: 10.1084/jem.20191388
- Kim, Y. et al. Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc Natl Acad Sci U S A 117, 8900–8911 (2020). doi: 10.1073/pnas.1913788117
- Basson, A. R. et al. Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci. Rep. 10, 5039 (2020). doi: 10.1038/s41598-020-60900-y
- Basson, A. R. et al. Regulation of Intestinal Inflammation by Dietary Fats. Front Immunol 11, 604989 (2020). doi: 10.3389/fimmu.2020.604989
- Chen, M. L., Takeda, K. & Sundrud, M. S. Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 12, 851–861 (2019). doi: 10.1038/s41385-019-0162-4
- Sundrud, M. S. & Hogan, S. P. What’s old is new again: Batf transcription factors and Th9 cells. Mucosal Immunol 12, 583–585 (2019). doi: 10.1038/s41385-019-0155-3
- Chen, M. L. & Sundrud, M. S. Xenobiotic and endobiotic handling by the mucosal immune system. Curr Opin Gastroenterol 34, 404–412 (2018). doi: 10.1097/MOG.0000000000000453
- Fanok, M. H. et al. Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis of Cutaneous T-Cell Lymphoma. J Invest Dermatol 138, 1116–1125 (2018). doi: 10.1016/j.jid.2017.10.028
- Cao, W. et al. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids. Immunity 47, 1182–1196.e10 (2017). doi: 10.1016/j.immuni.2017.11.012
- Delmas, A. et al. Informatics-Based Discovery of Disease-Associated Immune Profiles. PLoS One 11, e0163305 (2016). doi: 10.1371/journal.pone.0163305
- Chen, M. L. & Sundrud, M. S. Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflamm Bowel Dis 22, 1157–1167 (2016). doi: 10.1097/MIB.0000000000000714
- Skepner, J. et al. In vivo regulation of gene expression and T helper type 17 differentiation by RORγt inverse agonists. Immunology 145, 347–356 (2015). doi: 10.1111/imm.12444
- Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res 75, 296–305 (2015). doi: 10.1158/0008-5472.CAN-14-2277
- Yang, J., Sundrud, M. S., Skepner, J. & Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol Sci 35, 493–500 (2014). doi: 10.1016/j.tips.2014.07.006
- Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 cell transcriptional network by divergent mechanisms. Immunity 40, 477–489 (2014). doi: 10.1016/j.immuni.2014.04.004
- Skepner, J. et al. Pharmacologic inhibition of RORγt regulates Th17 signature gene expression and suppresses cutaneous inflammation in vivo. J Immunol 192, 2564–2575 (2014). doi: 10.4049/jimmunol.1302190
- Zhao, P., Hou, L., Farley, K., Sundrud, M. S. & Remold-O’Donnell, E. SerpinB1 regulates homeostatic expansion of IL-17+ γδ and CD4+ Th17 cells. J Leukoc Biol 95, 521–530 (2014). doi: 10.1189/jlb.0613331
- Carlson, T. J. et al. Halofuginone-induced amino acid starvation regulates Stat3-dependent Th17 effector function and reduces established autoimmune inflammation. J Immunol 192, 2167–2176 (2014). doi: 10.4049/jimmunol.1302316
- Ramesh, R. et al. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J Exp Med 211, 89–104 (2014). doi: 10.1084/jem.20130301
- Sundrud, M. S. Drug-resistant Th17 cells: culprits in steroid-refractory Crohn’s disease? Immunotherapy 6, 503–506 (2014). doi: 10.2217/imt.14.30
- Sundrud, M. S. & Trivigno, C. Identity crisis of Th17 cells: many forms, many functions, many questions. Semin Immunol 25, 263–272 (2013). doi: 10.1016/j.smim.2013.10.021
- Fogli, L. K. et al. T cell-derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. J Immunol 191, 3100–3111 (2013). doi: 10.4049/jimmunol.1301360
- Keller, T. L. et al. Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nat Chem Biol 8, 311–317 (2012). doi: 10.1038/nchembio.790
- Wan, Q. et al. Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. J Exp Med 208, 1875–1887 (2011). doi: 10.1084/jem.20102516
- Ghosh, S. et al. Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 107, 15169–15174 (2010). doi: 10.1073/pnas.1009193107
- Sundrud, M. S. & Nolan, M. A. Synergistic and combinatorial control of T cell activation and differentiation by transcription factors. Curr Opin Immunol 22, 286–292 (2010). doi: 10.1016/j.coi.2010.03.006
- Koh, K. P., Sundrud, M. S. & Rao, A. Domain requirements and sequence specificity of DNA binding for the forkhead transcription factor FOXP3. PLoS One 4, e8109 (2009). doi: 10.1371/journal.pone.0008109
- Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009). doi: 10.1126/science.1172638
- Bandukwala, H., Sundrud, M. S. & Rao, A. Orphans against autoimmunity. Immunity 29, 167–168 (2008). doi:10.1016/j.immuni.2008.07.008
- Sundrud, M. S. & Rao, A. Regulation of T helper 17 differentiation by orphan nuclear receptors: it’s not just ROR gamma t anymore. Immunity 28, 5–7 (2008). doi: 10.1016/j.immuni.2007.12.006
- Torres, V. J., VanCompernolle, S. E., Sundrud, M. S., Unutmaz, D. & Cover, T. L. Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets. J Immunol 179, 5433–5440 (2007). doi: 10.4049/jimmunol.179.8.5433
- Hu, H., Djuretic, I., Sundrud, M. S. & Rao, A. Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT. Trends Immunol 28, 329–332 (2007). doi: 10.1016/j.it.2007.06.006
- Sundrud, M. S. & Rao, A. New twists of T cell fate: control of T cell activation and tolerance by TGF-beta and NFAT. Curr Opin Immunol 19, 287–293 (2007). doi: 10.1016/j.coi.2007.04.014
- Sundrud, M. S. & Rao, A. Regulatory T-cell gene expression: ChIP’ing away at Foxp3. Immunol Cell Biol 85, 177–178 (2007). doi: 10.1038/sj.icb.7100051
- Eger, K. A. et al. Human natural killer T cells are heterogeneous in their capacity to reprogram their effector functions. PLoS One 1, e50 (2006). doi: https://doi.org/10.1371/journal.pone.0000050
- Oswald-Richter, K. et al. Helicobacter pylori VacA toxin inhibits human immunodeficiency virus infection of primary human T cells. J Virol 80, 11767–11775 (2006). doi: 10.1128/JVI.00213-06
- Sundrud, M. S. et al. Transcription factor GATA-1 potently represses the expression of the HIV-1 coreceptor CCR5 in human T cells and dendritic cells. Blood 106, 3440–3448 (2005). doi: 10.1182/blood-2005-03-0857
- Oswald-Richter, K. et al. HIV infection of naturally occurring and genetically reprogrammed human regulatory T-cells. PLoS Biol 2, E198 (2004). doi: 10.1371/journal.pbio.0020198
- Sundrud, M. S., Torres, V. J., Unutmaz, D. & Cover, T. L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci U S A 101, 7727–7732 (2004). doi: 10.1073/pnas.0401528101
- Sundrud, M. S. et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J Immunol 171, 3542–3549 (2003). doi: 10.4049/jimmunol.171.7.3542